Product Information

VESTAKEEP® iC 2630 G

CARBON FIBER-REINFORCED, IMPLANTABLE-GRADE POLYETHER ETHER KETONE COMPOUND FOR LONG-TERM IMPLANTS

VESTAKEEP* iC 2630 G is a black polyether ether ketone (PEEK) resin. It contains 30% carbon fiber to increase stiffness.

Biocompatibility

VESTAKEEP* iC 2630 G is especially designed for long term implantable medical devices. The compound composition is optimized for high biocompatibility and mechanical, thermal and chemical resistance.

VESTAKEEP® iC 2630 G is a development material, biocompatibility testing is planned.

The biocompatibility testing program will follows ISO 10993-1 recommendations for permanent tissue/bone contact and USP Class VI.

Planned biocompatibility tests for VESTAKEEP® iC 2630 G

STANDARD	DESCRIPTION
ISO 10993-12	GC/MS Fingerprint of extractable organic substances
USP CLASS VI	Acute Systemic Toxicity Intracutaneous Reactivity Muscle Implantation
ISO 10993-5	Cytotoxicity
ISO 10993-10	Irritation: Intracutaneous Reactivity
ISO 10993-10	Sensitization: Maximization test according to Magnusson and Kligman
ISO 10993-11	Acute Systemic Toxicity
ISO 10993-3	Genotoxicity: Ames Test
ISO 10993-3	Genotoxicity: Mouse Lymphoma test
ISO 10993-11	Subchronic Systemic Toxicity (28 days)
ISO 10993-6	Test for local effects after Implantation in bone (28, 90, 180 days)
ISO 10993-11	Material-mediated pyrogenes

ProcessingVESTAKEEP* iC 2630 G can be processed by common melt processing techniques like injection molding and extrusion. For injection molding, we recommend a melt temperature between 380°C and 400°C during the injection molding process. The mold temperature should be within a temperature range from 160°C to 200°C, preferably 180°C.

Delivery

VESTAKEEP* iC 2630 G is supplied as cylindrical pellets in hobbocks containing 5 kg or 10kg. Polyethylene bags are used as primary packaging.

The results shown have been generated from a low number of production lots.

The values presented are typical or average values, they do not constitute a specification.

VESTAKEEP®

Key Features

Industrial Sector

Medical Devices

Processing

Injection molding

Delivery form

Pellets, Granules

Optics

Opaque

Resistance to

Heat (thermal stability), Hydrolysis / hot water, Wear / abrasion, Fatigue resistance, Oil / fuels

Conformity Biocompatibility, Medical application

Additives

Carbon fibers

Mechanical properties ISO	dry	Unit	Test Standard
Tensile modulus	22700	MPa	ISO 527
Stress at break	234	MPa	ISO 527
Strain at break, B	1.7	%	ISO 527
Physical properties	dry	Unit	Test Standard
Density	1400	kg/m³	ISO 1183
Water absorption	0.04	%	Sim. to ISO 62
Density	1400	kg/m³	ASTM D 792
Rheological properties	dry	Unit	Test Standard
Melt volume-flow rate, MVR	18	$cm^3/10min$	ISO 1133
Temperature	400	°C	-
Load	5	kg	-

Characteristics

Applications Medical implants

Regulatory

US Pharmacopeia Class VI conformity

Delivery form Cylindrical pellets

